If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12-16x+3x^2=0
a = 3; b = -16; c = -12;
Δ = b2-4ac
Δ = -162-4·3·(-12)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-20}{2*3}=\frac{-4}{6} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+20}{2*3}=\frac{36}{6} =6 $
| 150-55x+5x^2=0 | | -5{x-3}=-25 | | 8-3x÷5=x*5 | | 160+0.25x=340 | | -24+-18x+6x^2=0 | | 5y-20=3y+25 | | -24-18x+6x^2=0 | | 5/7x-2=-13 | | Y=1,5x+6 | | 5/12y+1/6=7/6 | | 8(x-1)-2x=-(-+50) | | 2x/1x=2 | | 2x/2x=2 | | 2x/1x=1 | | 51x+64x=517.5 | | −7+4m+10=15−2 | | 3+10=2x+7 | | 3(z+5)=2z+15+z3(z+5)=2z+15 | | 3n-7n-18=30 | | 6(2x-8)+56=-8 | | 3/5(y-2)-19/5=-5 | | 4x=3=x | | 0.5x+0.2(40)=0.4(x+10) | | 6/11(t-3)-41/11=-4 | | 4(4+4m)=80 | | 4(2t-9)=-9(7-t) | | 4z+6=4(z+5)-16 | | 6x+6+4=-14 | | 5=8−3k | | 5y+14=5(y+4)-8 | | 9z+6=9(z+3)-26 | | 4+7x=8x+2x |